Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 333: 138914, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37187376

RESUMO

Strobilurins represent the most widely used class of fungicides nowadays andare considered relatively non-toxic to mammals and birds but highly toxic to aquatic biota. Dimoxystrobin is one of the novel strobilurins, recently included in the 3rd Watch List of the European Commission as available data indicate that it could pose a significant risk to aquatic species. As yet, the number of studies explicitly assessing the impact of this fungicide on terrestrial and aquatic species is extremely low, and the toxic effects of dimoxystrobin on fish have not been reported. Here we investigate for the first time the alterations induced by two environmentally relevant and very low concentrations of dimoxystrobin (6.56 and 13.13 µg/L) in the fish gills. morphological, morphometric, ultrastructural, and functional alterations have been evaluated using zebrafish as a model species. We demonstrated that even short-term exposure (96 h) to dimoxystrobin alters fish gills reducing the surface available for gas exchange and inducing severe alterations encompassing three reaction patterns: circulatory disturbance and both regressive and progressive changes. Furthermore, we revealed that this fungicide impairs the expression of key enzymes involved in osmotic and acid-base regulation (Na+/K+-ATPase and AQP3) and the defensive response against oxidative stress (SOD and CAT). The information presented here highlights the importance of combining data from different analytical methods for evaluating the toxic potential of currently used and new agrochemical compounds. Our results will also contribute to the discussion on the suitability of mandatory ecotoxicological tests on vertebrates before the introduction on the market of new compounds.


Assuntos
Fungicidas Industriais , Poluentes Químicos da Água , Animais , Fungicidas Industriais/metabolismo , Estrobilurinas/farmacologia , Peixe-Zebra/metabolismo , Brânquias/metabolismo , Poluentes Químicos da Água/análise , Mamíferos
2.
Mol Genet Metab Rep ; 31: 100851, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35242583

RESUMO

Fabry disease (FD) is a rare genetic lysosomal storage disorder, resulting from partial or complete lack of alpha-galactosidase A (α-GAL) enzyme, leading to systemic accumulation of substrate glycosphingolipids with a broad range of tissue damage. Current in vivo models are laborious, expensive, and fail to adequately mirror the complex FD physiopathology. To address these issues, we developed an innovative FD model in zebrafish. Zebrafish GLA gene encoding α-GAL enzyme presents a high (>70%) homology with its human counterpart, and the corresponding protein has a similar tissue distribution, as evaluated by immunohistochemistry. Moreover, a similar enzymatic activity in different life stages could be demonstrated. By using CRISPR/Cas9 technology, we generated a mutant zebrafish with decreased GLA gene expression, and decreased expression of the specific gene product in the kidney. Mutant animals showed higher plasma creatinine levels and proteinuria. Transmission electron microscopy (TEM) studies documented an increased podocyte foot process width (FPW) in mutant, as compared to wild type zebrafish. This zebrafish model reliably mirrors distinct features of human FD and could be advantageously used for the identification of novel biomarkers and for an effective screening of innovative therapeutic approaches.

3.
Antioxidants (Basel) ; 10(12)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34942966

RESUMO

The eye is continuously under oxidative stress due to high metabolic activity and reactive oxygen species generated by daily light exposure. The redox-sensitive protein DJ-1 has proven to be essential in order to protect retina and retinal pigment epithelium (RPE) from oxidative-stress-induced degeneration. Here, we analyzed the specific role of Müller cell DJ-1 in the adult zebrafish retina by re-establishing Müller-cell-specific DJ-1 expression in a DJ-1 knockout retina. Loss of DJ-1 resulted in an age-dependent retinal degeneration, including loss of cells in the ganglion cell layer, retinal thinning, photoreceptor disorganization and RPE cell dysfunction. The degenerative phenotype induced by the absence of DJ-1 was inhibited by solely expressing DJ-1 in Müller cells. The protective effect was dependent upon the cysteine-106 residue of DJ-1, which has been shown to be an oxidative sensor of DJ-1. In a label-free proteomics analysis of isolated retinas, we identified proteins differentially expressed after DJ-1 knockout, but with restored levels after Müller cell DJ-1 re-insertion. Our data show that Müller cell DJ-1 has a major role in protecting the retina from age-dependent oxidative stress.

4.
Ecotoxicol Environ Saf ; 228: 113013, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34839140

RESUMO

Oil spill clean-up measures using in situ burning can potentially result in seafloor contamination affecting benthic organisms. To mimic realistic exposure and measure effects, ovigerous Northern shrimp were continuously exposed for two weeks to the water-soluble fraction of oil coated on gravel followed by two weeks in clean seawater. North Sea crude oil (NSC) and field generated in situ burn residue (ISBR) of NSC were used (Low: 3 g/kg gravel, Medium: 6 g/kg gravel and High: 12 g/kg gravel). The concentrations of polyaromatic hydrocarbons (PAHs) in the water resulting from NSC were higher compared to ISBR. No mortality was observed in any treatment and overall moderate sublethal effects were found, mostly after exposure to NSC. Feeding was temporarily reduced at higher concentrations of NSC. PAH levels in hepatopancreas tissue were significantly elevated following exposure and still significantly higher at the end of the experiment in NSCHigh and ISBRHigh compared to control. Mild inflammatory response reactions and tissue ultrastructural alterations in gill tissue were observed in both treatments. Signs of necrosis occurred in ISBRHigh. No change in shrimp locomotory activity was noted from NSC exposure. However, ISBR exposure increased activity temporarily. Larvae exposed as pleopod-attached embryos showed significant delay in development from stage I to stage II after exposure to NSCHigh. Based on this study, oil-contaminated seafloor resulting from in situ burning clean-up actions does not appear to cause serious effects on bottom-living shrimp.

5.
Physiol Rep ; 9(19): e15059, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34617680

RESUMO

Sulfate ( SO 4 2 - ) regulation is challenging for euryhaline species as they deal with large fluctuations of SO 4 2 - during migratory transitions between freshwater (FW) and seawater (SW), while maintaining a stable plasma SO 4 2 - concentration. Here, we investigated the regulation and potential role of sulfate transporters in Atlantic salmon during the preparative switch from SO 4 2 - uptake to secretion. A preparatory increase in kidney and gill sodium/potassium ATPase (Nka) enzyme activity during smolt development indicate preparative osmoregulatory changes. In contrast to gill Nka activity a transient decrease in kidney Nka after direct SW exposure was observed and may be a result of reduced glomerular filtration rates and tubular flow through the kidney. In silico analyses revealed that Atlantic salmon genome comprises a single slc13a1 gene and additional salmonid-specific duplications of slc26a1 and slc26a6a, leading to new paralogs, namely the slc26a1a and -b, and slc26a6a1 and -a2. A kidney-specific increase in slc26a6a1 and slc26a1a during smoltification and SW transfer, suggests an important role of these sulfate transporters in the regulatory shift from absorption to secretion in the kidney. Plasma SO 4 2 - in FW smolts was 0.70 mM, followed by a transient increase to 1.14 ± 0.33 mM 2 days post-SW transfer, further decreasing to 0.69 ± 0.041 mM after 1 month in SW. Our findings support the vital role of the kidney in SO 4 2 - excretion through the upregulated slc26a6a1, the most likely secretory transport candidate in fish, which together with the slc26a1a transporter likely removes excess SO 4 2 - , and ultimately enable the regulation of normal plasma SO 4 2 - levels in SW.


Assuntos
Brânquias/metabolismo , Homeostase/fisiologia , Rim/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Sulfatos/metabolismo , Animais , Simulação por Computador , Osmorregulação/fisiologia , Salmo salar , ATPase Trocadora de Sódio-Potássio/genética , Equilíbrio Hidroeletrolítico/fisiologia
6.
Aquat Toxicol ; 226: 105558, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32673888

RESUMO

The aryl hydrocarbon receptor (Ahr) is a ligand-activated transcription factor that mediates the toxicity of dioxins and dioxin-like compounds (DLCs) in vertebrates. Two clades of the Ahr family exist in teleosts (Ahr1 and Ahr2), and it has been demonstrated that Ahr2 is the main protein involved in mediating the toxicity of dioxins and DLCs in most teleost species. Recently, we characterized the Atlantic cod (Gadus morhua) Ahr1a and Ahr2a receptors. To further explore a possible subfunction partitioning of Ahr1a and Ahr2a in Atlantic cod we have mapped the expression and localization of ahr1a and ahr2a in early developmental stages. Atlantic cod embryos were continuously exposed in a passive-dosing exposure system to the Ahr agonist, benzo[a]pyrene (B[a]P), from five days post fertilization (dpf) until three days post hatching (dph). Expression of ahr1a, ahr2a, and the Ahr-target genes, cyp1a and ahrrb, was assessed in embryos (8 dpf and 10 dpf) and larvae (3 dph) with quantitative real-time PCR analyses (qPCR), while in situ hybridization was used to assess the localization of expression of ahr1a, ahr2a and cyp1a. Quantitative measurements showed an increased cyp1a expression in B[a]P-exposed samples at all sampling points, and for ahr2a at 10 dpf, confirming the activation of the Ahr-signalling pathway. Furthermore, B[a]P strongly induced ahr2a and cyp1a expression in the cardiovascular system and skin, respectively, of embryos and larvae. Induced expression of both ahr2a and cyp1a was also revealed in the liver of B[a]P-exposed larvae. Our results suggest that Ahr2a is the major subtype involved in mediating responses to B[a]P in early developmental stages of Atlantic cod, which involves transcriptional regulation of biotransformation genes, such as cyp1a. The focused expression of ahr1a in the eye of embryos and larvae, and the presence of ahr2a transcripts in the jaws and fin nodes, further indicate evolved specialized roles of the two Ahrs in ontogenesis.


Assuntos
Citocromo P-450 CYP1A1/metabolismo , Gadus morhua/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Benzo(a)pireno/toxicidade , Citocromo P-450 CYP1A1/genética , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/metabolismo , Olho/efeitos dos fármacos , Olho/embriologia , Olho/metabolismo , Gadus morhua/genética , Gadus morhua/metabolismo , Larva/efeitos dos fármacos , Larva/genética , Fígado/efeitos dos fármacos , Fígado/crescimento & desenvolvimento , Fígado/metabolismo , Receptores de Hidrocarboneto Arílico/genética , Poluentes Químicos da Água/toxicidade
7.
Redox Biol ; 16: 237-247, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29525604

RESUMO

DJ-1, a Parkinson's disease-associated protein, is strongly up-regulated in reactive astrocytes in Parkinson's disease. This is proposed to represent a neuronal protective response, although the mechanism has not yet been identified. We have generated a transgenic zebrafish line with increased astroglial DJ-1 expression driven by regulatory elements from the zebrafish GFAP gene. Larvae from this transgenic line are protected from oxidative stress-induced injuries as caused by MPP+, a mitochondrial complex I inhibitor shown to induce dopaminergic cells death. In a global label-free proteomics analysis of wild type and transgenic larvae exposed to MPP+, 3418 proteins were identified, in which 366 proteins were differentially regulated. In particular, we identified enzymes belonging to primary metabolism to be among proteins affected by MPP+ in wild type animals, but not affected in the transgenic line. Moreover, by performing protein profiling on isolated astrocytes we showed that an increase in astrocytic DJ-1 expression up-regulated a large group of proteins associated with redox regulation, inflammation and mitochondrial respiration. The majority of these proteins have also been shown to be regulated by Nrf2. These findings provide a mechanistic insight into the protective role of astroglial up-regulation of DJ-1 and show that our transgenic zebrafish line with astrocytic DJ-1 over-expression can serve as a useful animal model to understand astrocyte-regulated neuroprotection associated with oxidative stress-related neurodegenerative disease.


Assuntos
Inflamação/genética , Fator 2 Relacionado a NF-E2/genética , Doença de Parkinson/genética , Proteína Desglicase DJ-1/genética , Proteínas de Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados/genética , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Regulação Enzimológica da Expressão Gênica , Humanos , Inflamação/patologia , Larva/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/metabolismo , Oxirredução , Estresse Oxidativo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteína Desglicase DJ-1/metabolismo , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
8.
Proc Natl Acad Sci U S A ; 113(33): 9339-44, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27482107

RESUMO

Oncogenic mutations of the Wnt (wingless)/ß-catenin pathway are frequently observed in major cancer types. Thus far, however, no therapeutic agent targeting Wnt/ß-catenin signaling is available for clinical use. Here we demonstrate that axitinib, a clinically approved drug, strikingly blocks Wnt/ß-catenin signaling in cancer cells, zebrafish, and Apc(min/+) mice. Notably, axitinib dramatically induces Wnt asymmetry and nonrandom DNA segregation in cancer cells by promoting nuclear ß-catenin degradation independent of the GSK3ß (glycogen synthase kinase3ß)/APC (adenomatous polyposis coli) complex. Using a DARTS (drug affinity-responsive target stability) assay coupled to 2D-DIGE (2D difference in gel electrophoresis) and mass spectrometry, we have identified the E3 ubiquitin ligase SHPRH (SNF2, histone-linker, PHD and RING finger domain-containing helicase) as the direct target of axitinib in blocking Wnt/ß-catenin signaling. Treatment with axitinib stabilizes SHPRH and thereby increases the ubiquitination and degradation of ß-catenin. Our findings suggest a previously unreported mechanism of nuclear ß-catenin regulation and indicate that axitinib, a clinically approved drug, would provide therapeutic benefits for cancer patients with aberrant nuclear ß-catenin activation.


Assuntos
Divisão Celular/efeitos dos fármacos , Imidazóis/farmacologia , Indazóis/farmacologia , Neoplasias/patologia , Inibidores de Proteínas Quinases/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/fisiologia , Animais , Axitinibe , DNA Helicases/fisiologia , Glicogênio Sintase Quinase 3 beta/fisiologia , Células HCT116 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Regeneração/efeitos dos fármacos , Ubiquitina-Proteína Ligases/fisiologia , Peixe-Zebra
9.
Dev Growth Differ ; 54(2): 241-52, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22348293

RESUMO

Potassium channel tetramerization domain containing proteins (KCTDs), which share a conserved BTB (Bric-a-brac, Tramtrack, Broad complex) domain at their N-terminus, are known to be involved in both developmental and neural processes. However, the developmental expression patterns and functional roles of most vertebrate KCTDs remain unknown. Using enhancer-trapping technology, we have identified a transgenic zebrafish line (ub49) where the vector insertion is in close proximity to kctd15a, and where transgenic marker (eGFP) expression closely reflects endogenous kctd15a expression. Both ub49 and kctd15a show strong maternal expression that suggests a functional role during epiboly and gastrulation. At later developmental stages, expression of eGFP in ub49 also shares the same spatiotemporal features as kctd15a in several neural tissues, including cranial placode precursors, retina, and different areas of the developing brain. In the retina, we observed eGFP labeling of the inner nuclear layer (INL), including a heterogenous population of amacrine cells, and both laminae of the inner plexiform layer (IPL). This expression pattern suggests that Kctd15a proteins have several context-dependent functional roles in both developmental and neural processes. The enhancer trap line, which is the first transgenic reporter of Kctd gene expression in vertebrates, also provides a novel tool to study kctd15a function in vivo.


Assuntos
Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Embrião não Mamífero/metabolismo , Hibridização In Situ , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Retina/embriologia , Retina/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sintenia , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
10.
Gene Expr Patterns ; 11(8): 517-24, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21930245

RESUMO

We have used a Tol2-derived trapping vector, carrying a hybrid Gal4 gene and a UAS:eGFP reporter cassette, to identify 16 transgenic zebrafish lines expressing the fluorescent marker eGFP in tissue-restricted patterns during development. Most lines show co-expression of eGFP and a hybrid Gal4 transcription activator containing a truncated VP16 domain that facilitate induction of other UAS-transgenes (UAS:RFP). Notably, many of the transgenic lines are expressed in particular areas of the central nervous system, such as the retina. We mapped the genomic positions of most of the activated insertions, and for three retina-specific lines we also demonstrate that eGFP reports the expression of particular endogenous genes. One of the identified zebrafish genes shows expression in ventral retina, and encodes a protein containing a repulsive guidance molecule (RGM) domain, suggesting a role in axonal guidance during optic nerve formation. Among the lines labeling other tissues, three show early co-expression of eGFP and Gal4-VP16 in blood vessels, erythrocytes and other hematopoietic cells. Interestingly, the activated insertion in the erythrocyte line was mapped to a site near the globin cluster on chromosome 3. All the reported lines co-expressing eGFP and the hybrid Gal4 activator may have potential as genetic tools to study developmental processes.


Assuntos
Animais Geneticamente Modificados/embriologia , Proteínas de Ligação a DNA/biossíntese , Embrião não Mamífero/embriologia , Desenvolvimento Embrionário/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Fluorescência Verde/biossíntese , Proteínas Recombinantes de Fusão/biossíntese , Fatores de Transcrição/biossíntese , Proteínas de Peixe-Zebra/biossíntese , Peixe-Zebra/embriologia , Animais , Animais Geneticamente Modificados/genética , Proteínas de Ligação a DNA/genética , Embrião não Mamífero/citologia , Proteínas de Fluorescência Verde/genética , Especificidade de Órgãos/fisiologia , Proteínas Recombinantes de Fusão/genética , Fatores de Transcrição/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...